By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Pharmacology MentorPharmacology MentorPharmacology Mentor
  • Home
  • Bookmarks
  • Pages
    • Terms and conditions
    • Submit a Topic or Chapter
    • Ask for a topic
    • Copyright Statement
    • Privacy Policy
    • Contact
    • About
  • Quizzes
    • Quiz on Antihyperlipidemics
    • Quiz on Antihypertensives
    • Quiz on Antiarrhythmics
    • Quiz on Drugs for CCF
    • Practice Quizzes on Antidiabetic drugs
    • Practice Quizzes on Drugs used in GI Disorders
    • CVS Post lab Quiz
    • Quiz on Pharmacokinetics and Pharmacodynamics
    • Drugs acting on CNS – All CNS topics EXCEPT NSAIDs
    • Drugs acting on ANS
    • Antimicrobial Chemotherapy: Antiprotozoal and antihelminthic drugs
    • Antimicrobial Chemotherapy – Antimalarial Drugs
    • Antimicrobial Chemotherapy – Antiviral and antifungal drugs
    • OC Pills
    • Antimicrobial Chemotherapy – Antibacterials
  • Blog
  • Chapters
    • General
    • CVS
    • Antimicrobial
    • Neuropharmacology
    • ANS
    • PNS
    • GI
    • Endocrine
    • Hematology
    • miscellaneous
Search
  • Advertise
© 2024 Pharmacology Mentor. All Rights Reserved.
Reading: Class 4 Antiarrhythmic Drugs: Verapamil and Diltiazem
Share
Sign In
Notification Show More
Font ResizerAa
Pharmacology MentorPharmacology Mentor
Font ResizerAa
Search
  • Home
  • Blog
  • Bookmarks
  • Terms and conditions
  • Submit a Topic or Chapter
  • Ask for a topic
  • Copyright Statement
  • Contact
  • Quizzes
    • Quiz on Antihyperlipidemics
    • Quiz on Antiarrhythmics
    • Quiz on Drugs for CCF
    • Quiz on Antihypertensives
    • Practice Quizzes on Antidiabetic drugs
    • Practice Quizzes on Drugs used in GI Disorders
    • Quiz on Pharmacokinetics and Pharmacodynamics
    • Drugs acting on CNS – All CNS topics EXCEPT NSAIDs
    • NSAIDs
    • CVS Post lab Quiz
    • Drugs acting on ANS
    • Antimicrobial Chemotherapy – Antimalarial Drugs
    • Antimicrobial Chemotherapy: Antiprotozoal and antihelminthic drugs
    • Antimicrobial Chemotherapy – Antiviral and antifungal drugs
    • OC Pills
    • Antimicrobial Chemotherapy – Antibacterials
  • About
Have an existing account? Sign In
Follow US
  • Advertise
© 2024 Pharmacology Mentor. All Rights Reserved.
Pharmacology Mentor > Blog > Pharmacology > CVS > Class 4 Antiarrhythmic Drugs: Verapamil and Diltiazem
CVSPharmacology

Class 4 Antiarrhythmic Drugs: Verapamil and Diltiazem

Last updated: March 12, 2024 4:37 am
Pharmacology Mentor
10 Views
Share
2 Min Read
antiarrhythmic drugs
#image_title
SHARE

Verapamil

Mechanism of Action

  • Blocks both activated and inactivated L-type calcium channels.
  • More effective in tissues that fire frequently or are less completely polarized at rest, such as the SA and AV nodes.
  • Can suppress both early and delayed afterdepolarizations.

Extracardiac Effects

  • Causes peripheral vasodilation, which is beneficial in hypertension and peripheral vasospastic disorders.

Toxicity

  • Cardiotoxic effects are dose-related and usually avoidable.
  • Can induce AV block in large doses or in patients with AV nodal disease.
  • Adverse extracardiac effects include constipation, lassitude, nervousness, and peripheral edema.

Pharmacokinetics & Dosage

  • Half-life of 4–7 hours.
  • Extensively metabolized by the liver; bioavailability is only about 20% after oral administration.
  • Dosage varies depending on the route of administration and the condition being treated.

Therapeutic Use

  • Major indication is for supraventricular tachycardia.
  • Can also reduce the ventricular rate in atrial fibrillation and flutter (“rate control”).

Diltiazem

Mechanism of Action

  • Similar in efficacy to verapamil for managing supraventricular arrhythmias.

Toxicity

  • Causes hypotension or bradyarrhythmias relatively infrequently.

Therapeutic Use

  • Used in the management of supraventricular arrhythmias, including rate control in atrial fibrillation.
  • An intravenous form is available for rate control in atrial fibrillation.

Conclusion

Class 4 antiarrhythmic drugs like Verapamil and Diltiazem primarily act by blocking calcium channels, which makes them effective in treating supraventricular arrhythmias. However, they come with their own set of risks and side effects, including the potential for cardiotoxicity in certain conditions. Therefore, their use should be carefully considered and monitored.

Contents
VerapamilMechanism of ActionExtracardiac EffectsToxicityPharmacokinetics & DosageTherapeutic UseDiltiazemMechanism of ActionToxicityTherapeutic UseConclusion

Note: This article is intended for educational purposes and should not be considered as medical advice. Always consult with a healthcare professional for medical advice and treatment.

Disclaimer: This article is for informational purposes only and does not constitute medical advice. Always seek the advice of a healthcare provider with any questions regarding a medical condition.
Intravenous Anesthetics
Pharmacology of Thiazide Diuretics
Pharmacology of Succinylcholine
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) – A Comprehensive Guide
What is Barbiturate toxicity, and how is it treated?
TAGGED:diltiazemPharmacologyverapamil

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Copy Link Print
Previous Article Amiodarone Antiarrhythmic drugs: Class 3 – Amiodarone and others
Next Article antiarrhythmic drugs Miscellaneous Antiarrhythmic Agents: Adenosine and others
Leave a review Leave a review

Leave a Review Cancel reply

Your email address will not be published. Required fields are marked *

Please select a rating!

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Most Popular Posts

  1. Drug Nomenclature: Drug Naming system (Dr. Ambadasu Bharatha) (569)
  2. Routes of Drug Administration: A detailed overview (Pharmacology Mentor) (487)
  3. Routes of Drug Administration (Pharmacology Mentor) (444)
  4. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) – A Comprehensive Guide (Pharmacology Mentor) (404)
  5. First-Order vs. Zero-Order Kinetics: What You Need to Know (Pharmacology Mentor) (351)
  6. Pharmacology Definitions and Terminology (Pharmacology Mentor) (306)
  7. Enzyme inducers: How they are important in the clinical pharmacology? (Pharmacology Mentor) (290)
  8. Drug Potency and Efficacy (Pharmacology Mentor) (264)
  9. Antimalarial Drugs – A Comprehensive Guide (Pharmacology Mentor) (251)
  10. Unlock the Power of Mnemonics in Pharmacology (anonymous) (246)

Categories

  • ANS26
  • Antimicrobial35
  • Clinical Pharmacology4
  • CVS31
  • Endocrine21
  • Featured15
  • General47
  • GI15
  • Hematology13
  • miscellaneous28
  • Neuropharmacology38
  • Pharmacology261
  • PNS2
  • Reproductive System10
  • Respiratory System7

Tags

Absorption Addiction Adrenaline Adverse effects Alcohol Anaphylaxis angina pectoris Angioplasty Antibiotic resistance Antibiotics Anticholinergics anticoagulants Anticonvulsants Antidepressants Antimicrobial Resistance Antiplatelet Drugs Aspirin Asthma atherosclerosis Atropine Benzodiazepines beta-blockers Bioavailability Bipolar disorder calcium channel blockers Carbamazepine Cardiovascular system Clinical trials contraindications Coronary Artery Bypass Grafting Coronary artery disease diuretics Dosage DRC drug absorption Drug Administration Drug classification Drug delivery drug design Drug development Drug discovery drug distribution Drug Dosage Drug efficacy drug excretion Drug formulation Drug interactions Drug Mechanism of Action Drug metabolism Drug pricing Drug regulation Drugs Drug safety Efficacy Ethanol Generic drugs GnRH Headache Healthcare professionals heart attack high-throughput screening Hypertension Insulin Lamotrigine lifestyle changes mechanism of action Medication Mental health metabolism Monoamine Oxidase Inhibitors Mood disorders Mood stabilizers Myocardial infarction Neurotransmitters Nitroglycerin Norepinephrine Oral medications Paracetamol Pharmaceutical industry Pharmacists Pharmacodynamics Pharmacokinetics Pharmacological actions Pharmacology Pharmacovigilance Prevention Psychopharmacology Psychotherapy Sedation Selective Serotonin Reuptake Inhibitors Serotonin Side effects sodium channel blockers Stent Placement Symptoms Therapeutic uses Treatment Tricyclic Antidepressants volume of distribution vomiting

Latest Articles

antiretroviral drugs
Pharmacology of Antiviral Drugs
Antimicrobial Pharmacology
May 1, 2025
Featured image on Diabetes
Pharmacotherapy of Type 1 Diabetes Mellitus
Endocrine Pharmacology
April 24, 2025
broad-spectrum antibiotics - tetracyclines
Broad spectrum antibiotics – Tetracyclines and Chloramphenicol
Antimicrobial Pharmacology
March 28, 2025
Pharmacotherapy of erectile dysfunction
Pharmacotherapy of erectile dysfunction
miscellaneous Pharmacology
January 28, 2025

Stay Connected

FacebookLike
//

Pharmacology Mentor is dedicated to serving as a useful resource for as many different types of users as possible, including students, researchers, healthcare professionals, and anyone interested in understanding pharmacology.

Quick Link

  • Terms and conditions
  • Copyright Statement
  • Privacy Policy
  • Ask for a topic
  • Submit a Topic or Chapter
  • Contact

Top Categories

  • Pharmacology
  • Antimicrobial
  • Neuropharmacology
  • Endocrine
  • Reproductive System
  • miscellaneous

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”8909″]

Pharmacology MentorPharmacology Mentor
Follow US
© 2024 Pharmacology Mentor. All Rights Reserved.
Pharmacology Mentor
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?

Not a member? Sign Up