Antimicrobial Resistance and its mechanisms

Antimicrobial resistance (AMR) is the process by which microorganisms evolve to withstand the effects of drugs that were once effective against them. Understanding the mechanisms of resistance is vital for clinicians, microbiologists, and policy makers in managing infections and designing stewardship interventions. What Is Antimicrobial Resistance? AMR occurs when previously susceptible microbes (bacteria, fungi, viruses, or parasites) acquire the ability

By Pharmacology Mentor

Androgens and Antiandrogens

Androgens are steroid hormones that promote the development and maintenance of male sex characteristics. The principal naturally occurring androgens in humans are testosterone and dihydrotestosterone (DHT), both synthesized mainly in the testes and, to a lesser extent, the adrenal cortex. Androgens bind to intracellular androgen receptors (AR), acting as transcription factors to regulate gene expression and drive differentiation, anabolic effects,

By Pharmacology Mentor

Pharmacotherapy of erectile dysfunction

Introduction Erectile dysfunction (ED), defined as the consistent or recurrent inability to attain or maintain an erection sufficient for satisfactory sexual performance, affects millions of men worldwide. Though once considered an inevitable part of aging, ED is now regarded as a potentially reversible condition with multiple underlying causes, including vascular, neurogenic, hormonal, and psychogenic factors. Advances in pharmacotherapy have dramatically

By Pharmacology Mentor
Weather
-4°C
New York
clear sky
-4° _ -6°
48%
5 km/h

Follow US

Categories

ANS

26 Articles

Antimicrobial

35 Articles

Endocrine

22 Articles

Physiology of the Thyroid Gland

Introduction The thyroid gland plays a pivotal role in human physiology, modulating metabolism, growth,

By Pharmacology Mentor

Pharmacology of Thiazide Diuretics

Thiazide diuretics are cornerstone antihypertensive and mild‑to‑moderate diuretic agents that inhibit the

By Pharmacology Mentor

Chapters and Topics in General Pharmacology

Introduction to General Pharmacology General pharmacology covers the fundamental principles of pharmacology,

By Pharmacology Mentor

The Comprehensive Guide to Drug Discovery, Development, and Clinical Trials: Everything You Need to Know

Drug discovery and development is an intricate and multifaceted process that encompasses

By Pharmacology Mentor

Pharmacology of Skeletal Muscle Relaxants

Introduction Skeletal muscle relaxants are a diverse group of medications that act

By Pharmacology Mentor

Drug Compendia: An Overview

Drug compendia refer to comprehensive collections of information on drugs presented in

By anonymous

Factors Affecting Oral Drug Absorption and its Bioavailability

Oral drug absorption is a critical process that determines the efficacy and

By Pharmacology Mentor

Pharmacology of Tetracyclines

INTRODUCTION Tetracyclines are a class of broad-spectrum antibiotics initially discovered in the

By Pharmacology Mentor

Pharmacotherapy of Peptic Ulcer

Scope: Pathophysiology, Drug Classifications, Mechanisms of Action, Clinical Pharmacology, and Therapeutic Guidelines. I. Introduction and Pathophysiology Peptic ulcer disease (PUD) is a chronic, relapsing inflammatory disorder characterized by a breach in the mucosa of the stomach (gastric ulcer) or the proximal duodenum (duodenal ulcer) extending through the muscularis mucosae. The pathophysiology of PUD is best understood as a disruption of the delicate equilibrium between aggressive factors and defensive mechanisms. The Balance Hypothesis A peptic ulcer develops when the aggressive factors overwhelm the mucosal defenses. Pharmacotherapy aims to restore this balance by either reducing aggression or bolstering defense. Aggressive Factors Defensive Factors Gastric Acid (HCl): Direct corrosion. Mucus Layer: Physical barrier against acid/pepsin. Pepsin: Proteolytic enzyme. Bicarbonate (HCO3-): Neutralizes acid at the epithelial surface. Helicobacter pylori: Bacterial infection. Prostaglandins (PGE2, PGI2): Stimulate mucus/bicarbonate; maintain blood flow. NSAIDs: Inhibit protective prostaglandin synthesis. Mucosal Blood Flow: Removes acid; supplies oxygen/nutrients for repair. Regulation of Acid Secretion The central target of most anti-ulcer drugs is the parietal cell. The final common pathway for acid secretion is the Proton Pump (H+/K+-ATPase). The parietal cell is stimulated by three primary secretagogues acting on specific basolateral receptors: Histamine: Binds to H2 receptors (Gs-coupled) → increases cAMP → activates Protein Kinase A. Acetylcholine: Binds to M3 muscarinic receptors (Gq-coupled) → increases intracellular Ca2+. Gastrin: Binds to CCK2 receptors (Gq-coupled) → increases intracellular Ca2+. H+(intracellular) + K+(luminal) + ATP &xrarr; H+(luminal) + K+(intracellular) + ADP + Pi II. Agents Reducing Intragastric Acidity A. Proton Pump Inhibitors (PPIs) Agents: Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, Rabeprazole. 1. Mechanism of Action PPIs are prodrugs. They are weak bases that circulate in the blood in an inactive form. Ion Trapping: They diffuse into the highly acidic secretory canaliculi (pH < 1.0). Activation: In this environment, the PPI is protonated and forms a reactive sulfenamide cation. Irreversible Inhibition: This forms a covalent disulfide bond with cysteine residues (specifically Cys813) on the H+/K+-ATPase pump. Pharmacological Consequence Because the inhibition is covalent (irreversible), acid secretion is suppressed until the parietal cell synthesizes new pump proteins (approx. 18–24 hours). This explains the long duration of action despite a short plasma half-life. 2. Clinical Uses & Pharmacokinetics Uses: PUD, GERD, Zollinger-Ellison Syndrome, NSAID prophylaxis, H. pylori eradication. Metabolism: Hepatic via CYP2C19 and CYP3A4. Note: Genetic polymorphism in CYP2C19 (common in Asian populations) can affect efficacy. 3. Adverse Effects & Interactions Nutritional Deficiencies (B12, Iron, Calcium). Increased risk of bone fractures and C. difficile infection. Rebound hypersecretion upon stopping. Drug Interaction Alert Omeprazole inhibits CYP2C19. Clopidogrel (Plavix) is a prodrug requiring CYP2C19 for activation. Concurrent use may reduce the antiplatelet efficacy of clopidogrel. Pantoprazole or Rabeprazole are preferred in these patients. B. Potassium-Competitive Acid Blockers (P-CABs) Agent: Vonoprazan. This is a newer class of drugs. Unlike PPIs, P-CABs compete reversibly with K+ ions at the pump. They do not require acid activation. They offer a rapid onset (day 1) and are highly effective in H. pylori eradication. C. H2 Receptor Antagonists (H2RAs) Agents: Famotidine, Nizatidine, Cimetidine. Mechanism: Reversible block of H2 receptors. Highly effective for nocturnal acid secretion. Adverse Effects (Cimetidine): Cimetidine is a potent CYP inhibitor and has anti-androgenic effects (gynecomastia) in men. Tolerance: Rapid tolerance (tachyphylaxis) develops within 3 days, limiting long-term use. III. Agents Neutralizing Acid (Antacids) Antacids are weak bases that react with gastric hydrochloric acid to form a salt and water. Al(OH)3 + 3HCl → AlCl3 + 3H2O Type Agents Features Adverse Effects Systemic Sodium Bicarbonate Rapid onset; absorbed. Metabolic alkalosis; Fluid retention. Non-Systemic Magnesium Hydroxide Potent; poor absorption. Diarrhea (osmotic). Aluminum Hydroxide Slow acting. Constipation; Hypophosphatemia. Calcium Carbonate Potent; rapid. Rebound acid; Kidney stones. IV. Mucosal Protective Agents A. Sucralfate Forms a viscous, sticky polymer in acid (pH < 4) that adheres to the ulcer crater ("Band-Aid" effect). Note: Requires acid to work; do not give with PPIs. B. Misoprostol (Prostaglandin E1 Analogue) Stimulates mucus/bicarbonate secretion and inhibits acid. Specifically indicated for prevention of NSAID-induced ulcers. Contraindication Pregnancy Category X: Misoprostol stimulates uterine contractility and can induce abortion. C. Bismuth Compounds Coats the ulcer and possesses direct antimicrobial activity against H. pylori. Causes harmless blackening of stool/tongue. V. Pharmacotherapy of H. pylori (2024 Update) The goal is bacterial eradication. High intragastric pH is required to optimize antibiotic efficacy. 1. First-Line: Bismuth Quadruple Therapy (BQT) Preferred due to rising clarithromycin resistance. PPI (b.i.d.) Bismuth Subcitrate (q.i.d.) Tetracycline (500 mg q.i.d.) Metronidazole (q.i.d.) Duration: 10–14 days. 2. The "Modern" Approach: Vonoprazan-Based Therapy Superior acid suppression leads to higher eradication rates. Dual Therapy: Vonoprazan + Amoxicillin. Triple Therapy: Vonoprazan + Amoxicillin + Clarithromycin. 3. Clarithromycin Triple Therapy (Restricted) Only use if local resistance is known to be < 15%. (PPI + Clarithromycin + Amoxicillin). VI. Summary of Drug Classes Drug Class Prototype Mechanism Target Main Limitation PPIs Omeprazole Irreversible H+/K+ block Bone fracture risk; C. diff risk. P-CABs Vonoprazan Reversible K+ competition Newer agent; cost. H2 Blockers Famotidine Histamine H2 block Tachyphylaxis (tolerance). Prostaglandins Misoprostol EP3 agonist Diarrhea; Abortifacient. Coating Agents Sucralfate Physical barrier Drug binding interactions. VII. Conclusion The pharmacotherapy of peptic ulcer disease relies on restoring the balance between aggressive and defensive factors. While PPIs remain the standard for acid suppression, the management of H. pylori is shifting toward Bismuth Quadruple Therapy and Vonoprazan-based regimens to combat antibiotic resistance.

By Pharmacology Mentor

Drug-Receptor Interactions: Agonists and Antagonists

Drug-receptor interactions refer to the binding of drugs to specific receptors, leading to a biological response. These interactions can either be agonistic or antagonistic. Agonists Agonists are drugs that bind

By Pharmacology Mentor