Pharmacovigilance

1 · Introduction Pharmacovigilance (PV) is the “science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other medicine-related problem” (WHO). In an era of precision medicine, globalised supply chains and accelerated approvals, PV has become indispensable for safeguarding patients throughout the therapeutic life-cycle—from first-in-human dosing to decades of post-marketing exposure. Not merely a regulatory

By Pharmacology Mentor

Pharmacokinetic Principles: A Comprehensive Guide

Introduction Pharmacokinetics is the science that describes how drugs move within the body and is crucial for rational dosing in clinical settings. This article aims to provide a comprehensive understanding of the key pharmacokinetic principles, including the movement of drugs in the body, permeation, Fick's Law of Diffusion, and the solubility characteristics of drugs. The Movement of Drugs in the

By Pharmacology Mentor

Pharmacology of thyroid and antithyroid drugs – an Overview

Physiology of Thyroid Hormones Thyroid Hormone Synthesis The thyroid secretes T4 and T3, the synthesis of which depends on dietary iodine or iodide supplements.- Iodide ion is actively taken up by the thyroid, where it is converted to elemental iodine by thyroidal peroxidase.- The protein thyroglobulin acts as a scaffold for thyroid hormone synthesis, with the iodination of tyrosine residues

By Pharmacology Mentor
Weather
2°C
New York
clear sky
3° _ -1°
55%
4 km/h
Tue
5 °C
Wed
5 °C
Thu
4 °C
Fri
0 °C
Sat
1 °C

Follow US

Categories

ANS

26 Articles

Antimicrobial

35 Articles

Endocrine

22 Articles

The history and evolution of antimicrobial agents

The development of antimicrobial agents stands as one of the most significant

By Pharmacology Mentor

Pre-Anesthetic Medication in Clinical Practice

Introduction Pre-anesthetic medications (premedicants) have been integral to anesthetic practice since the

By Pharmacology Mentor

Classification of Adrenergic Receptors: A Quick Overview

Introduction Adrenergic receptors play a pivotal role in regulating physiological processes and

By Pharmacology Mentor

Intravenous Anesthetics

Introduction Understanding Intravenous Anesthetics Intravenous anesthetics are a class of drugs used

By Pharmacology Mentor

Helicobacter pylori Infection and Treatment

Introduction Helicobacter pylori (H. pylori) is a spiral-shaped, gram-negative bacterium that colonizes the

By Pharmacology Mentor

Alcohol Withdrawal Symptoms and its Management

1. Overview & Clinical Importance Alcohol withdrawal syndrome (AWS) is a potentially

By Pharmacology Mentor

Pharmacology of Antiplatelet Drugs

Antiplatelet drugs inhibit platelet activation and aggregation, thereby reducing the risk of

By Pharmacology Mentor

Antiarrhythmic drugs: Lidocaine (Class 1B)

If you trained in a time when every crash cart seemed to

By Pharmacology Mentor
Want to explore pharmacolology research?
Discover hundreds of articles at our journals

Random Content

Pharmacotherapy of Peptic Ulcer

Scope: Pathophysiology, Drug Classifications, Mechanisms of Action, Clinical Pharmacology, and Therapeutic Guidelines. I. Introduction and Pathophysiology Peptic ulcer disease (PUD) is a chronic, relapsing inflammatory disorder characterized by a breach in the mucosa of the stomach (gastric ulcer) or the proximal duodenum (duodenal ulcer) extending through the muscularis mucosae. The pathophysiology of PUD is best understood as a disruption of the delicate equilibrium between aggressive factors and defensive mechanisms. The Balance Hypothesis A peptic ulcer develops when the aggressive factors overwhelm the mucosal defenses. Pharmacotherapy aims to restore this balance by either reducing aggression or bolstering defense. Aggressive Factors Defensive Factors Gastric Acid (HCl): Direct corrosion. Mucus Layer: Physical barrier against acid/pepsin. Pepsin: Proteolytic enzyme. Bicarbonate (HCO3-): Neutralizes acid at the epithelial surface. Helicobacter pylori: Bacterial infection. Prostaglandins (PGE2, PGI2): Stimulate mucus/bicarbonate; maintain blood flow. NSAIDs: Inhibit protective prostaglandin synthesis. Mucosal Blood Flow: Removes acid; supplies oxygen/nutrients for repair. Regulation of Acid Secretion The central target of most anti-ulcer drugs is the parietal cell. The final common pathway for acid secretion is the Proton Pump (H+/K+-ATPase). The parietal cell is stimulated by three primary secretagogues acting on specific basolateral receptors: Histamine: Binds to H2 receptors (Gs-coupled) → increases cAMP → activates Protein Kinase A. Acetylcholine: Binds to M3 muscarinic receptors (Gq-coupled) → increases intracellular Ca2+. Gastrin: Binds to CCK2 receptors (Gq-coupled) → increases intracellular Ca2+. H+(intracellular) + K+(luminal) + ATP &xrarr; H+(luminal) + K+(intracellular) + ADP + Pi II. Agents Reducing Intragastric Acidity A. Proton Pump Inhibitors (PPIs) Agents: Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, Rabeprazole. 1. Mechanism of Action PPIs are prodrugs. They are weak bases that circulate in the blood in an inactive form. Ion Trapping: They diffuse into the highly acidic secretory canaliculi (pH < 1.0). Activation: In this environment, the PPI is protonated and forms a reactive sulfenamide cation. Irreversible Inhibition: This forms a covalent disulfide bond with cysteine residues (specifically Cys813) on the H+/K+-ATPase pump. Pharmacological Consequence Because the inhibition is covalent (irreversible), acid secretion is suppressed until the parietal cell synthesizes new pump proteins (approx. 18–24 hours). This explains the long duration of action despite a short plasma half-life. 2. Clinical Uses & Pharmacokinetics Uses: PUD, GERD, Zollinger-Ellison Syndrome, NSAID prophylaxis, H. pylori eradication. Metabolism: Hepatic via CYP2C19 and CYP3A4. Note: Genetic polymorphism in CYP2C19 (common in Asian populations) can affect efficacy. 3. Adverse Effects & Interactions Nutritional Deficiencies (B12, Iron, Calcium). Increased risk of bone fractures and C. difficile infection. Rebound hypersecretion upon stopping. Drug Interaction Alert Omeprazole inhibits CYP2C19. Clopidogrel (Plavix) is a prodrug requiring CYP2C19 for activation. Concurrent use may reduce the antiplatelet efficacy of clopidogrel. Pantoprazole or Rabeprazole are preferred in these patients. B. Potassium-Competitive Acid Blockers (P-CABs) Agent: Vonoprazan. This is a newer class of drugs. Unlike PPIs, P-CABs compete reversibly with K+ ions at the pump. They do not require acid activation. They offer a rapid onset (day 1) and are highly effective in H. pylori eradication. C. H2 Receptor Antagonists (H2RAs) Agents: Famotidine, Nizatidine, Cimetidine. Mechanism: Reversible block of H2 receptors. Highly effective for nocturnal acid secretion. Adverse Effects (Cimetidine): Cimetidine is a potent CYP inhibitor and has anti-androgenic effects (gynecomastia) in men. Tolerance: Rapid tolerance (tachyphylaxis) develops within 3 days, limiting long-term use. III. Agents Neutralizing Acid (Antacids) Antacids are weak bases that react with gastric hydrochloric acid to form a salt and water. Al(OH)3 + 3HCl → AlCl3 + 3H2O Type Agents Features Adverse Effects Systemic Sodium Bicarbonate Rapid onset; absorbed. Metabolic alkalosis; Fluid retention. Non-Systemic Magnesium Hydroxide Potent; poor absorption. Diarrhea (osmotic). Aluminum Hydroxide Slow acting. Constipation; Hypophosphatemia. Calcium Carbonate Potent; rapid. Rebound acid; Kidney stones. IV. Mucosal Protective Agents A. Sucralfate Forms a viscous, sticky polymer in acid (pH < 4) that adheres to the ulcer crater ("Band-Aid" effect). Note: Requires acid to work; do not give with PPIs. B. Misoprostol (Prostaglandin E1 Analogue) Stimulates mucus/bicarbonate secretion and inhibits acid. Specifically indicated for prevention of NSAID-induced ulcers. Contraindication Pregnancy Category X: Misoprostol stimulates uterine contractility and can induce abortion. C. Bismuth Compounds Coats the ulcer and possesses direct antimicrobial activity against H. pylori. Causes harmless blackening of stool/tongue. V. Pharmacotherapy of H. pylori (2024 Update) The goal is bacterial eradication. High intragastric pH is required to optimize antibiotic efficacy. 1. First-Line: Bismuth Quadruple Therapy (BQT) Preferred due to rising clarithromycin resistance. PPI (b.i.d.) Bismuth Subcitrate (q.i.d.) Tetracycline (500 mg q.i.d.) Metronidazole (q.i.d.) Duration: 10–14 days. 2. The "Modern" Approach: Vonoprazan-Based Therapy Superior acid suppression leads to higher eradication rates. Dual Therapy: Vonoprazan + Amoxicillin. Triple Therapy: Vonoprazan + Amoxicillin + Clarithromycin. 3. Clarithromycin Triple Therapy (Restricted) Only use if local resistance is known to be < 15%. (PPI + Clarithromycin + Amoxicillin). VI. Summary of Drug Classes Drug Class Prototype Mechanism Target Main Limitation PPIs Omeprazole Irreversible H+/K+ block Bone fracture risk; C. diff risk. P-CABs Vonoprazan Reversible K+ competition Newer agent; cost. H2 Blockers Famotidine Histamine H2 block Tachyphylaxis (tolerance). Prostaglandins Misoprostol EP3 agonist Diarrhea; Abortifacient. Coating Agents Sucralfate Physical barrier Drug binding interactions. VII. Conclusion The pharmacotherapy of peptic ulcer disease relies on restoring the balance between aggressive and defensive factors. While PPIs remain the standard for acid suppression, the management of H. pylori is shifting toward Bismuth Quadruple Therapy and Vonoprazan-based regimens to combat antibiotic resistance.

By Pharmacology Mentor