PharmacologyANSDrugs Acting on the Autonomic Nervous System: A Comparison...

Drugs Acting on the Autonomic Nervous System: A Comparison with the Adrenaline/Epinephrine-Induced Fight, Flight and Fright Response

-

Understanding the action of drugs on the autonomic nervous system (ANS) can be simplified by drawing a comparison with the adrenaline/epinephrine-induced fight, flight, and fright response. This response, also known as the acute stress response, is the body’s physiological reaction to perceived harmful events, attacks, or threats to survival. To better comprehend the role of various drugs acting on the ANS, we’ll break down the two main divisions of the system and compare their functions to adrenaline’s effects.

The Sympathetic Nervous System (SNS) – Fight or Flight

The sympathetic nervous system is responsible for the fight or flight response, which prepares the body to react to potentially dangerous situations. When the SNS is activated, it triggers the release of adrenaline (epinephrine) and norepinephrine (noradrenaline), which act on various target organs to produce a series of physiological changes, including:

  • Increased heart rate and blood pressure
  • Dilated pupils
  • Increased blood flow to muscles
  • Enhanced mental alertness
  • Increased metabolism
effects of adrenaline

Drugs that mimic or amplify the effects of adrenaline/epinephrine in the SNS are known as sympathomimetics or adrenergic agonists. These drugs can be used to treat various conditions, such as asthma, nasal congestion, etc. Examples include epinephrine, norepinephrine, and pseudoephedrine.

Classification of Sympathomimetics Mechanism of Action Examples
Direct-acting adrenergic agonists These drugs bind directly to adrenergic receptors and activate the sympathetic nervous system. Adrenaline/Epinephrine, Norepinephrine, Dopamine, Phenylephrine, Albuterol
Indirect-acting adrenergic agonists These drugs enhance the release and/or inhibit the reuptake of norepinephrine and dopamine, leading to increased activation of the sympathetic nervous system. Amphetamines, Cocaine
Mixed-acting adrenergic agonists These drugs have both direct and indirect effects on adrenergic receptors, leading to increased activation of the sympathetic nervous system. Ephedrine, Pseudoephedrine, Methamphetamine
Alpha-adrenergic agonists These drugs selectively activate alpha-adrenergic receptors, leading to vasoconstriction and increased blood pressure. Phenylephrine, Clonidine
Beta-adrenergic agonists These drugs selectively activate beta-adrenergic receptors, leading to bronchodilation, increased heart rate, and increased contractility. Albuterol, Dobutamine

Conversely, drugs that inhibit or block the effects of adrenaline are known as sympatholytics or adrenergic antagonists. These drugs are used to treat conditions like hypertension, arrhythmias, anxiety, migraine headaches, etc. Examples include propranolol, metoprolol, and atenolol.

Classification of Sympatholytics Mechanism of Action Examples
Alpha-adrenergic blockers These drugs block alpha-adrenergic receptors, leading to vasodilation and decreased blood pressure. Prazosin, Doxazosin, Terazosin
Beta-adrenergic blockers These drugs block beta-adrenergic receptors, leading to decreased heart rate, decreased contractility, and decreased blood pressure. Propranolol, Atenolol, Metoprolol
Alpha-beta-adrenergic blockers These drugs block both alpha- and beta-adrenergic receptors, leading to vasodilation, decreased heart rate, decreased contractility, and decreased blood pressure. Carvedilol, Labetalol
Centrally-acting alpha-adrenergic agonists These drugs stimulate alpha2-adrenergic receptors in the brain, leading to decreased sympathetic outflow and decreased blood pressure. Clonidine, Methyldopa
Ganglionic blockers These drugs block the transmission of signals between sympathetic and parasympathetic ganglia, leading to decreased sympathetic activity and decreased blood pressure. Hexamethonium, Mecamylamine

The Parasympathetic Nervous System (PNS) – Rest and Digest

The parasympathetic nervous system works to counter the effects of the SNS and is responsible for the body’s “rest and digest”. This division of the ANS helps to conserve energy, slow down heart rate, and promote digestion and relaxation. When the PNS is activated, it releases neurotransmitters like acetylcholine (ACh) to elicit the following effects:

  • Decreased heart rate and blood pressure
  • Constricted pupils
  • Increased salivation and digestion
  • Stimulation of the urinary and digestive systems

Drugs that mimic or enhance the effects of acetylcholine in the PNS are called parasympathomimetics or cholinergic agonists. These drugs are used to treat conditions such as glaucoma, myasthenia gravis, curare poisoning, etc. Examples include pilocarpine, physostigmine, neostigmine, bethanechol, and donepezil.

Classification of Parasympathomimetics Mechanism of Action Examples
Direct-acting cholinomimetics These drugs bind directly to muscarinic and/or nicotinic receptors and activate the parasympathetic nervous system. Pilocarpine, Bethanechol, Methacholine, Nicotine
Indirect-acting cholinomimetics These drugs inhibit the activity of acetylcholinesterase (AChE), which is the enzyme responsible for breaking down acetylcholine in the synapse. This leads to an increase in acetylcholine levels and activation of the parasympathetic nervous system. Physostigmine, Neostigmine, Donepezil, Galantamine, Rivastigmine
Cholinesterase reactivators These drugs reactivate cholinesterase enzymes that have been inhibited by toxins, such as organophosphate poisoning. By reactivating the enzymes, excess acetylcholine can be broken down and the toxic effects can be reversed. Pralidoxime, Obidoxime, HI-6

On the other hand, drugs that inhibit or block the effects of acetylcholine are known as parasympatholytics or cholinergic antagonists. These drugs are used to treat various conditions like irritable bowel syndrome, organophosphate poisoning, overactive bladder, motion sickness, etc. Examples include atropine, scopolamine, and oxybutynin.

Classification of Parasympatholytics Mechanism of Action Examples
Antimuscarinic agents These drugs block muscarinic receptors and inhibit the parasympathetic nervous system. Atropine, Scopolamine, Ipratropium, Tiotropium
Ganglionic blockers These drugs block the transmission of signals between sympathetic and parasympathetic ganglia, leading to decreased parasympathetic activity. Trimethaphan, Mecamylamine
Neuromuscular blocking agents These drugs block the transmission of signals between nerves and muscles, leading to muscle paralysis. Rocuronium, Vecuronium, Pancuronium

Comparisons

Parasympathetic/cholinergic agonists Versus Sympathetic/sympathomimetic agonists

adrenaline vs cholinergic agonists

Parasympathetic blockers/cholinergic antagonists Versus Sympathetic blockers/sympatholytics/adrenergic antagonists

adrenergic antagonists vs cholinergic antagonists

Parasympathetic/cholinergic agonists Versus Sympathetic blockers/sympatholytics/adrenergic antagonists

cholinergic vs adrenergic blockers

Sympathetic agonists/sympathomimetics/adrenergic agonists Versus Parasympatholytics/Cholinergic antagonists

adrenergic drugs vs cholinergic antagonists

Disclaimer: This article is for informational purposes only and should not be taken as medical advice. Always consult with a healthcare professional before making any decisions related to medication or treatment.

Oh hi there 👋

Sign up to receive awesome content in your inbox, every month.

We don’t spam! Read our privacy policy for more info.

Oh hi there 👋

Sign up to receive awesome content in your inbox every month.

We don’t spam! Read our privacy policy for more info.

Disclaimer: This article is for informational purposes only and does not constitute medical advice. Always seek the advice of a healthcare provider with any questions regarding a medical condition.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest articles

Inflammatory Bowel Disease (IBD)

Introduction Inflammatory Bowel Disease (IBD) is a term that encompasses two main chronic conditions: Crohn's disease and ulcerative colitis. These...

Irritable Bowel Syndrome (IBS)

Introduction Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder characterized by a group of symptoms that typically occur together....

Gastroesophageal Reflux Disease (GERD)

Introduction Gastroesophageal Reflux Disease (GERD) is a chronic digestive disorder marked by the recurrent reflux of stomach contents, particularly gastric...

Peptic Ulcer Disease (PUD)

Introduction Peptic Ulcer Disease (PUD) is a gastrointestinal disorder characterized by sores or lesions in the lining of the stomach...

Helicobacter pylori Infection and Treatment

Introduction Helicobacter pylori (H. pylori) is a bacterium that infects the stomach lining and is a common cause of peptic...

Zollinger-Ellison Syndrome (ZES)

Zollinger-Ellison Syndrome (ZES) is a rare digestive disorder characterized by the development of one or more tumors, known as...

Helicobacter pylori Infection and Treatment

Introduction Helicobacter pylori (H. pylori) is a bacterium that infects the stomach lining and is a common cause of peptic...

Zollinger-Ellison Syndrome (ZES)

Zollinger-Ellison Syndrome (ZES) is a rare digestive disorder characterized by the development of one or more tumors, known as...

Miscellaneous

Pharmacology of Levocetirizine

Introduction Levocetirizine is a second-generation antihistamine that is used to treat symptoms associated with chronic allergic rhinitis and uncomplicated cases...

Pharmacology of Histamine and Antihistamines

Histamine, a pivotal mediator in various physiological and pathological processes, is synthesized from the amino acid L-histidine. This transformation...

You might also likeRELATED
Recommended to you

Pharmacology Mentor We would like to show you notifications for the latest news and updates.
Dismiss
Allow Notifications